MATH 504 HOMEWORK 3

Due Wednesday, October 3.

Problem 1. Suppose that κ is strongly inaccessible. Show that:

- (1) α is an ordinal iff $V_{\kappa} \models$ " α is an ordinal".
- (2) α is a cardinal iff $V_{\kappa} \models$ " α is a cardinal".
- (3) α is a regular cardinal iff $V_{\kappa} \models$ " α is a regular cardinal".
- (4) α is strongly inaccessible iff $V_{\kappa} \models$ " α is strongly inaccessible".

Note: the above problem shows that if κ is the least inaccessible cardinal, then $V_{\kappa} \models$ "there are no inaccessible cardinals". It follows that it cannot be proved in ZFC that inaccessible cardinals exist.

Problem 2. Suppose that κ is inaccessible. Show that $|V_{\kappa}| = \kappa$ and V_{κ} satisfies the Replacement axiom, i.e. show that if f is a function from a set $X \in V_{\kappa}$ into V_{κ} , then $f \in V_{\kappa}$.

Problem 3. Assume that V = L. Prove that $V_{\alpha} = L_{\alpha}$ iff $\alpha = \aleph_{\alpha}$. Here you can use the theorem that in V = L, GCH holds.

Problem 4. Suppose that κ is a regular uncountable cardinal in L. Show that L_{κ} satisfies the axioms of $ZF \setminus Powerset$ with the exception of Comprehension. (L_{κ} also satisfies Comprehension, but I will show that in class)

Problem 5. Suppose that $M \prec L_{\omega_1}$. Show that M is transitive. (Hint: for $X \in M$, take the \prec_L -least onto $f : \omega \to X$. Show that f is definable in L_{ω_1} from X and use this to show that $f \in M$. Also show $\omega \subset M$. Use these to prove that range of f is a subset of M)